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To examine possible links between a global instability and laminar–turbulent break-
down in a three-dimensional boundary layer, the spatio-temporal stability of primary
and secondary crossflow vortices has been investigated for the DLR swept-plate
experiment. In the absence of any available procedure for the direct verification of
pinching for three-dimensional wave packets the alternative saddle-point continuation
method has been applied. This procedure is known to give reliable results only in a
certain vicinity of the most unstable ray. Therefore, finding no absolute instability
by this method does not prove that the flow is absolutely stable. Accordingly, our
results obtained this way need to be confirmed experimentally or by numerical simu-
lations. A geometric interpretation of the time-asymptotic saddle-point result explains
certain convergence and continuation problems encountered in the numerical wave
packet analysis. Similar to previous results, all our three-dimensional wave packets
for primary crossflow vortices were found to be convectively unstable.

Due to prohibitive CPU time requirements the existing procedure for the verification
of pinching for two-dimensional wave packets of secondary high-frequency instabilities
could not be implemented. Again saddle-point continuation was used. Surprisingly, all
two-dimensional wave packets of high-frequency secondary instabilities investigated
were also found to be convectively unstable. This finding was corroborated by
recent spatial direct numerical simulations of Wassermann & Kloker (2001) for a
similar problem. This suggests that laminar–turbulent breakdown occurs after the
high-frequency secondary instabilities enter the nonlinear stage, and spatial marching
techniques, such as the parabolized stability equation method, should be applicable
for the computation of these nonlinear states.

1. Introduction
The exact mechanism of laminar–turbulent breakdown is still not adequately un-

derstood but is of considerable practical importance. A better understanding of the
physics behind this mechanism would not only allow more reliable transition pre-
diction but also open novel approaches to transition control. For steady flows with
prescribed environmental noise level, transition appears to be more or less fixed at a
particular spatial location. When this spatial location is insensitive to low noise levels,
breakdown might be linked to the appearance of a locally absolute instability of the
flow. Schatz, Barkley & Swinney (1995) speculated in their conclusion that a change
from convective to absolute instability is possibly behind the onset of turbulence in
spatially periodic channel flow. An absolute instability describes a temporally unstable
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wave with zero group velocity. It usually signals the appearance of a so-called global
instability supporting time-periodic intrinsic oscillations, cf. the review by Huerre &
Monkewitz (1990). Here the term global refers to global in space. Being a temporally
unstable solution of equations linearized about a steady base flow, a global instability
corresponds to a local Hopf bifurcation, cf. Seydel (1994). Assuming homogeneity in
the third direction, the direct solution of such two-dimensional eigenvalue problems,
is now feasible, cf. Morzyński, Afanasiev & Thiele (1999), or the survey by Theofilis
(2001). Floquet theory, used for our secondary stability computations, is a special
case of two-dimensional eigenvalue analysis, namely with one spatially periodic di-
mension. As long as the direction of homogeneity is not the direction in which an
absolute–convective transition is possible, the corresponding two-dimensional eigen-
value computations provide an alternative to direct numerical simulations (DNS) for
identifying the onset of a global instability.

The absolute instability found by Lingwood (1995, 1996) in the rotating disk
problem is an often cited example, and motivated several researchers to look for
an absolute instability in the related swept-wing problem, i.e. Oertel & Delfs (1995),
Lingwood (1997b), Taylor & Peake (1998), Ryzhov & Terent’ev (1998), Taylor &
Peake (1999), or the recent experimental investigation of White (2000). However, it
soon became clear that the analogy between the rotating disk problem and swept-
wing flow is not as close as had been anticipated. Because the rotating disk flow
is exactly periodic in the circumferential direction only the radial group velocity
has to vanish for an absolute instability to exist. On the other hand, there is no
physical reason to assume spanwise periodicity on a swept wing, see Taylor & Peake
(1998). This means that one component, for example the streamwise component, of
the group velocity may vanish, signalling an absolute instability in this direction.
However, this is not sufficient for the existence of a true absolute instability unless
the other component of the group velocity vanishes also. The necessary extension
of Briggs’ method, cf. Briggs (1964), Bers (1975), or Huerre & Monkewitz (1990),
to three-dimensional wave packets requires the simultaneous pinching of the Fourier
inversion contours in the streamwise and spanwise directions. Bers (1975) made an
attempt in that direction, but the final analytical details were presented by Brevdo
(1991). None of the researchers mentioned above could find such a double pinching
for primary crossflow instabilities in a swept-wing boundary layer. Therefore, as far
as we know at present, primary crossflow vortices on a swept wing are convectively
unstable, i.e. a disturbance, localized in time and space, will be swept away from the
location of its initiation. Convective instability is a precondition for the successful
application of spatial marching techniques such as the parabolized stability equation
(PSE) approach reviewed by Herbert (1997).

Very often, shortly before breakdown high-frequency instabilities are observed of
nonlinearly deformed quasi-streamwise vortices, such as saturated Görtler vortices, cf.
Li & Malik (1995) or Bottaro & Klingmann (1996), or Dean vortices, cf. Matsubara
& Alfredsson (1998). Further examples are low-speed ‘streaks’ in velocity boundary
layers, cf. Alfredsson & Matsubara (2000) or Andersson et al. (2001), and natural
convection boundary layers, cf. Jeschke & Beer (2001), or the crossflow vortices in a
swept-wing boundary layer, cf. Arnal, Coustols & Juillen (1984), Poll (1985), Kohama,
Saric & Hoos (1991), Malik, Li & Chang (1994), Lerche (1997), Malik et al. (1999),
Kawakami, Kohama & Okutsu (1999), White (2000) or White et al. (2001). Such
longitudinal vortices produce inflectionally unstable velocity profiles and play a key
role in several proposed self-sustaining processes, see for example Waleffe (1997)
or Dauchot & Manneville (1997). In addition, recent investigations of swirling jets
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and wakes, cf. Delbende, Chomaz & Huerre (1998), Loiseleux, Chomaz & Huerre
(1998), Olendraru et al. (1999) and Yin et al. (2000), demonstrated that such flows
can support absolute instabilities, suggesting a link between the onset of a locally
absolute instability and the phenomenon of vortex breakdown as a logical extension
of the group velocity concept of vortex breakdown advanced by Benjamin (1962) and
Tsai & Widnall (1980).

The object of the present study is an investigation of the spatio-temporal stability
(complex wavenumber and complex frequency) of primary and secondary crossflow
vortices in a three-dimensional boundary layer in order to examine whether a change
from convective to absolute instability is possible in crossflow vortices. As pointed
out by Huerre (1988), primary and secondary instabilities need not have the same
absolute–convective stability character. In their theoretical investigation Koch et al.
(2000) observed that the wake-like spanwise velocity profiles, caused by the stationary
nonlinearly distorted primary crossflow vortices, cf. in particular figure 14 in Koch et
al. (2000), are not only the origin of secondary instabilities but also make secondary
instabilities possible candidates for the occurrence of an absolute instability.

However, there are two complications. First, as noted above, a correct analysis
has to consider three-dimensional wave packets. At present no numerical algorithm
implementing the two-dimensional pinching criterion of Brevdo (1991) is available.
One has to rely on the saddle-point method, originally developed by Benjamin
(1961), Criminale & Kovasznay (1962) and Gaster (1968). The saddle-point method
has the disadvantage that causality is not satisfied a priori. The proof that the
inversion contour can be deformed into the steepest descent path through a particular
saddle point is no easy task, as demonstrated by Lingwood (1997a) for the rotating
disk problem. Even for primary instabilities only few absolute–convective stability
investigations exist for three-dimensional wave packets. Therefore, in the first part
of this paper we perform a saddle-point analysis for the primary crossflow vortices
in the DLR swept-plate experiment, confirming their convective instability character.
At the same time a geometrical interpretation of the saddle-point condition explains
certain convergence problems encountered in the numerical saddle-point continuation
analysis.

The second complication concerns secondary instabilities. Although Brevdo &
Bridges (1996) provided the mathematical derivation of absolute–convective instabil-
ity criteria for spatially periodic base flows, practically all applications so far have
been limited to model flows using amplitude equations with analytically given disper-
sion relations, as for example Huerre (1988), Brevdo & Bridges (1996) or Chomaz,
Couairon & Julien (1999). These amplitude equations describe secondary instabilities
in the vicinity of the primary threshold. Aside from Koch (2000), where preliminary
results for secondary crossflow vortices in a strongly nonlinear periodic primary base
flow were presented, the only exception known to the author is the paper by Brancher
& Chomaz (1997). These authors performed a direct numerical simulation of the
asymptotic wave packet initiated by a localized initial disturbance in a spatially per-
iodic shear layer. The corresponding numerical technique for computing the impulse
response had been developed by Delbende et al. (1998) in their investigation of the
spatio-temporal instability of the Batchelor vortex. To our knowledge the present in-
vestigation is the first direct application of the theory of Brevdo & Bridges (1996) to a
high-amplitude spatially periodic base flow, bringing to light several partly unresolved
problems.

One new problem at higher amplitudes of the spatially periodic base flow away
from the primary threshold is that usually several secondary instability modes are
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amplified. It is still unclear how to identify the physically relevant saddle point(s) in
the absence of a pinching proof. Using the latter, this problem has been solved by
Brevdo et al. (1999) for a related primary instability film-flow problem with only two
unstable eigenvalues. Also, Lingwood (1997a) addressed this problem in her primary
stability investigation of the rotating disk. Furthermore, the necessary high resolution
of the nonlinear primary vortices leads to rather large secondary eigenvalue problems
and requires time-consuming computations for the corresponding eigenvalues. On
account of the prohibitive computer time requirements, and since we could not detect
any sign of an absolutely unstable secondary instability, we limited our secondary
stability computations to quasi-two-dimensional wave packets propagating mainly
along the axis of the nonlinearly distorted stationary primary crossflow vortices.

2. Review of time-asymptotic wave-packet analysis
Before considering the large-time behaviour of primary and secondary wave packets

in the linear regime we give a brief review of the corresponding analysis, cf. Briggs
(1964), Gaster (1968), Brevdo (1991) or Oertel & Delfs (1996). Using the parallel-flow
assumption and neglecting nonlinear terms in the Navier–Stokes equations, when
non-dimensionalized with a suitable reference length Lref and reference velocity Uref ,
a wave packet generated by an initially localized source can be represented by the
following inverse Fourier–Laplace integral:

q̃(x, y, z, t) =
1

(2π)3

∫∫
F

∫
L

f(y, α, β, ω)

D(α, β, ω)
ei(αx+βz−ωt) dω dα dβ. (2.1)

Here q̃ denotes a disturbance velocity and (x, y, z) are Cartesian coordinates with y
being normal to the bounding wall; (α, β) are the complex wavenumbers in the (x, z)
direction, t is the time, and ω the complex frequency. D(α, β, ω) = 0 denotes the
dispersion relation for complex α, β and ω. The function f(y, α, β, ω) depends on the
details of the initial excitation and boundary conditions, but is of no concern in our
time-asymptotic analysis. The Fourier inversion plane F can initially be taken along
the strip of analyticity centred around the respective real axes of the complex α-
and β-planes, while the Laplace inversion contour L has to be taken in the complex
ω-plane above all singularities of the integrand in order to satisfy causality.

For three-dimensional wave packets solutions for large time can be obtained by
Brevdo’s (1991) extension of Briggs’ (1964) method, or alternatively by the saddle-
point method, cf. Gaster (1968). Brevdo’s (1991) extension requires that the Fourier
inversion contours are ‘pinched’ simultaneously by two coalescing spatial branches
originating in different half-planes and corresponding to waves propagating in oppo-
site directions, i.e.

D(α, β, ω) =
∂D

∂α
(α, β, ω) =

∂D

∂β
(α, β, ω) = 0. (2.2)

The saddle-point method hinges on the proof that the Fourier inversion contours
can be deformed into the steepest descent path without crossing any singularities.
Both requirements are difficult to implement for three-dimensional wave packets. For
two-dimensional wave packets Briggs’ pinching condition can be implemented directly
by solving the global, i.e. the whole spectrum, spatial eigenvalue problem for various
fixed imaginary parts ωi of the Laplace inversion contour until pinching is reached.

No corresponding algorithm is available for three-dimensional wave packets. There-
fore, practically all investigations of three-dimensional wave packets make use of the



Spatio-temporal crossflow stability 89

saddle-point method in connection with a continuation procedure starting with the
most unstable saddle point. Oertel & Delfs (1995) extended the continuation technique
for two-dimensional wave packets, cf. for example Deissler (1987), Brevdo (1995), or
appendix B in Brevdo et al. (1999), to three-dimensional wave packets. However,
without proof of pinching an absolute instability found by this method is not reliable.
Neither does finding no absolute instability by this method prove that the flow is
absolutely stable. One cannot exclude the possibility that another saddle point exists
which might extend the unstable domain of ray velocities, perhaps producing an
absolute instability. Brevdo et al. (1999) solved a two-dimensional film flow problem
by both methods and demonstrated such a failure of the saddle-point continuation
method. For an analytically given model dispersion relation this switching to an-
other saddle point, and the corresponding choice of the ‘right’ saddle point, was also
addressed by Conrado & Bohr (1995), see in particular their figure 6. Therefore,
a saddle-point approach combined with a continuation procedure starting with the
most unstable saddle point gives reliable results only in a certain vicinity of the most
unstable ray. Outside this vicinity the results of such a saddle-point tracking could
lead to erroneous conclusions.

Contributions to q̃(x, y, z, t) in (2.1) come from the continuous spectrum as well
as from all discrete singularities of the integrand. For large time the contribution
from the temporally most unstable wave, given by D(α, β, ω) = 0, will dominate
the remaining Fourier inversion and can be evaluated asymptotically for t → ∞ by
keeping x/t and z/t fixed and applying the method of steepest descent, see Gaster
(1968). For ∂D/∂ω 6= 0 the dominant contribution comes from saddle points of the
phase function, i.e.

∂ωr

∂αr
(α, β, ω) =

x

t
≡ U, ∂ωr

∂βr
(α, β, ω) =

z

t
≡W, (2.3)

together with

∂ωi

∂αr
(α, β, ω) = 0,

∂ωi

∂βr
(α, β, ω) = 0. (2.4)

Here the subscripts r and i denote the real and imaginary part. Equations (2.3)
and (2.4) express the fact that, instead of temporal instabilities with real wavenum-
bers, or spatial instabilities with real frequency, we are looking for instabilities with
complex wavenumber and complex frequency but real group velocity (U,W ). The
corresponding asymptotic result for simple saddle points, cf. Gaster (1968) or Brevdo
(1991),

q̃(x, y, z, t) ∼ exp {i [αU + βW − ω] t}

t

{
∂2ω

∂α2

∂2ω

∂β2
−
[
∂2ω

∂α∂β

]2
}1/2

, (2.5)

describes a wave in a frame of reference moving with velocity (U,W ). An observer
in this frame of reference measures a Doppler-shifted frequency ω′r and a temporal
growth rate ω′i given by

ω′r = ωr − αrU − βrW , ω′i = ωi − αiU − βiW . (2.6)

The flow is linearly unstable if there exist ray velocity components U and W such that
ω′i > 0. The flow is termed locally absolutely unstable if the velocity corresponding to
the relevant laboratory frame, i.e. in most cases U = W = 0, lies within the amplified
domain ω′i > 0 bounded by the neutral ω′i = 0 contour. Otherwise the instability is
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locally convectively unstable, cf. Briggs (1964), or the recent reviews by Huerre &
Monkewitz (1990) or Huerre & Rossi (1998).

For analytically given dispersion relations equations (2.2) are solved by Newton
iteration, cf. for example Chomaz et al. (1999). In this connection it is of interest to
point out a link to acoustics of sound-absorbing ducts, where one has attenuated waves
instead of growing waves. For given acoustic wall impedance, and neglecting finite-
length liner effects, the least-damped duct mode determines the sound attenuation
per unit length. According to the infinite duct theory of Cremer (1953) maximal
sound attenuation per unit length is attained for such liner properties which force
the coincidence of the least-damped duct mode with the second-least-damped mode.
This corresponds to conditions (2.2). However, in the sound attenuation problem no
pinching occurs because both attenuated waves propagate in the same direction, cf.
also Tester (1973) or Koch (1977), in particular figure 24 in the latter paper.

For numerically computed dispersion relations, the conditions (2.4) for prescribed
spatial growth rates αi and βi are used in the saddle-point continuation procedure.
Starting with the most amplified ray, initially αi and βi are taken to be zero, cf. the
procedure outlined in Oertel & Delfs (1995). Then the corresponding ω, as well as αr
and βr , can be computed via local eigenvalue iteration. For this purpose we extended
the Wielandt iteration, cf. Zurmühl (1961, p. 289ff), to complex α, β. We prefer the
temporal algorithm because for secondary instabilities a global spatial eigenvalue
solver is still too costly. The ray velocity (U,W ) can be determined numerically via
(2.3) and the corresponding ω′i follows from (2.6). Then the spatial growth rate αi and
βi is varied incrementally until the neutral condition ω′i = 0, or any other prescribed
ω′i , is reached. The rest of the neutral curve can be computed by iterative methods.

3. Spatio-temporal analysis of primary crossflow vortices
Before considering the spatio-temporal stability of secondary crossflow vortices in

the DLR swept-plate experiment, we investigate the spatio-temporal stability of the
corresponding primary crossflow vortices in this section. As a parameter we use the
local chordwise distance, which is equivalent to varying the local Reynolds number
as defined in (3.1) below. A thorough description of the DLR swept-plate experiment
had been given in the recent review by Bippes (1999) and references cited therein,
and will therefore be omitted here. In agreement with the corresponding theoretical
investigation of Koch et al. (2000) we chose the free-stream velocity Q∗∞ = 19 m s−1

and the effective sweep angle ϕ∞ = 42.5◦. The chord length of the plate is c∗ = 0.5 m.
Here the asterisk denotes dimensional quantities. A favourable chordwise pressure
gradient on the swept plate is induced by a displacement body above the plate. The
experimentally obtained pressure distribution cp is approximated analytically and the
corresponding non-similar boundary-layer computation of Koch et al. (2000) provides
the spanwise-constant steady laminar base flow velocity Q∗ = (U∗, V ∗,W ∗) for the
disturbance velocity q̃∗ = (ũ∗, ṽ∗, w̃∗). For infinite swept flow the chordwise velocity
at the edge of the boundary layer U∗c,e = Q∗∞ cosϕ∞(1 − cp)1/2 depends only on the
chordwise coordinate x∗c . Local quantities are chosen as reference quantities, such as
the local similarity length L∗ref = {ν∗x∗c/U∗c,e(x∗c)}1/2, and the local free-stream velocity

Q∗ref = Q∗e(x∗c) = {(U∗c,e)2 + (W ∗
c,e)

2}1/2; ν∗ denotes the kinematic viscosity. Then the
local Reynolds number at a fixed x∗c is defined by

Re = Q∗refL
∗
ref/ν

∗ =
{
U∗c,e(x

∗
c)x
∗
c/ν

∗}1/2
/ cosϕs(x

∗
c), (3.1)
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Figure 1. Infinite swept plate: coordinate systems.

where ϕs denotes the angle between the chord and free-stream direction at the
boundary-layer edge, as sketched in figure 1.

Figure 1 depicts the various coordinate systems used for the swept-plate problem.
The body-fixed chordwise coordinate system (x∗c , y∗, z∗c ), is denoted by the subscript
c, where x∗c is in the chordwise direction, z∗c is in the spanwise direction, and y∗
is normal to the plate. Corresponding velocities are denoted by (u∗c , v∗, w∗c ). For the
primary instability analysis often a local streamwise coordinate system (x∗s , y∗, z∗s ),
denoted by the subscript s, is employed. Then x∗s is in the direction of the local free-
stream velocity Q∗e at the boundary-layer edge, and z∗s is in the crossflow direction
normal to x∗s . For the secondary stability investigation the wave-oriented coordinate
system (x∗ψ, y∗, z∗ψ) is used, where x∗ψ is in the direction of the primary wave vector
k = (αc, βc) with ψc = arctan(βc/αc); αc, βc are the wavenumbers in the chordwise
coordinate system. For the stationary crossflow vortices, treated in this paper, the
vortex axis denotes the stationary wave front and the term vortex-oriented coordinate
system is more appropriate.

As noted in § 2, the spatio-temporal computation begins with real (α, β). Then,
conditions (2.4) are satisfied for the global maximum of the temporal growth rate
ωi,max and provide the criterion for linear stability, cf. Drazin & Reid (1981) or Huerre
& Monkewitz (1990),

ωi,max > 0 linearly unstable flow, (3.2)

ωi,max < 0 linearly stable flow. (3.3)

Following the saddle-point continuation procedure outlined in Oertel & Delfs (1996)
we changed the spatial growth rate (αi, βi) by a small increment. Keeping the new
(αi, βi) fixed, we searched again for the maximum of the surface ωi(αr, βr). We continued
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Figure ωi(contour levels) ωi (�) ωi (4)

2(a) −0.0208, −0.0205, −0.02038, −0.0202, −0.0198 – −0.02038
2(b) −0.020, −0.0197, −0.01945, −0.019 −0.01944 –
2(c) −0.0195, −0.0192, −0.019, −0.0185 −0.01840 –
2(d ) −0.022, −0.021, −0.0207 – −0.0209
2(e) −0.0127, −0.0130, −0.0135, −0.0126 – −0.01261
2(f ) −0.0005, 0, +0.0005, +0.001, +0.0015 0.00182 –
4(a) −0.005, −0.001, −0.0006, 0, +0.005, +0.01 0.01159 –
4(b) −0.0025, −0.002, −0.0015, −0.001, 0, +0.0025, +0.005 0.005809 –
4(c) +0.04, +0.0435, +0.044, +0.045 – 0.04356

Table 1. ωi contour levels and value of ωi at a maximum (�) or saddle-point (4)
in figures 2 and 4.

this procedure until the neutral curve ω′i = 0 in the frame of reference moving with
the ray velocities (2.3) was reached. While this continuation procedure worked well
for most of the neutral curve, it failed for part of it. To find out the reason behind
this failure, we applied the same procedure to the well-studied Blasius boundary-layer
flow, and describe the results in the following subsection.

3.1. Primary wave packet in a Blasius boundary layer

In various publications Gaster investigated the evolution of a three-dimensional
wave packet in a Blasius boundary layer by means of different methods. In his
initial theoretical treatment of the time-asymptotic behaviour of three-dimensional
wave packets, cf. Gaster (1968), the limited computer capabilities at that time forced
Gaster to apply the real axis approximation, i.e. he assumed a real dispersion law.
Gaster found caustics as a consequence of certain singularities, but showed in Gaster
(1981) that these singularities are due to the unrealistic real axis approximation
and corrected his earlier results. In the mean time Gaster (1975b) used a numerical
method to demonstrate quite good agreement between experiment and theory, cf.
Gaster (1975a), in the linear regime despite the parallel-flow assumption. Spatial
DNS by Konzelmann (1990) removed this limitation and extended the results into
the nonlinear regime. Recently Chernoray et al. (2001) investigated spatio-temporal
flow patterns in a straight and weakly swept-wing boundary layer experimentally.

In the following we shall consider only the case at Reynolds number Re =
U∗∞L∗ref/ν∗ = 580, corresponding to the Reδ∗ = 1000 example of Gaster (1968).
The results are displayed in figure 2. Starting with purely temporal instabilities, i.e.
αi = βi = 0, where α, β denote the wavenumbers in the streamwise and spanwise
directions, we compute first the maximal temporal amplification ωi,max. In the iso-
amplification plot ωi(αr, βr) of figure 2(f ) the maximum ωi,max at (α = 0.15563, β = 0)
is marked by the square symbol. This is also the maximum of ω′i that can be attained
along any ray. The shaded area in figure 2(f ) indicates the amplified domain ωi > 0.
With (2.3) the ray velocities (U,W ) at ωi,max(αi = 0, βi = 0) can be computed, essen-
tially providing the propagation velocity of the centre of the wave packet. From (2.6)
we obtain the corresponding ω′i , denoted by the square symbol for W = 0 in figure 2.

Next, we change the spatial amplification (αi, βi) by a small increment. For example,
we may choose βi = 0, αi = +∆αi, i.e. procede in the arctan βi/αi = 0◦ direction along
the W = 0 line. Fixing βi = 0, αi = +∆αi we compute again the maximum of the new
ωi(αr, βr) surface, where condition (2.4) is satisfied. Algorithmically we implemented
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Figure 2. Time-asymptotic three-dimensional wave packet in a Blasius boundary layer at Re = 580:
temporal iso-amplification curves ω′i(U,W ) = const. together with six examples (insets a–c), of
temporal iso-amplification plots ωi(αr, βr) = const. with (αi, βi) fixed. �, a saddle-point condition
corresponding to a maximum of the ωi(αr, βr) surface; 4, a saddle-point condition corresponding
to a saddle point of the ωi(αr, βr) surface. ωi contour levels are listed in table 1. For comparison the
neutral two-dimensional results ( e) of figure 3(a) are also included.

the search for this maximum by employing a simple gradient method. Increasing αi
further step by step in our saddle-point continuation procedure, we finally reach the
neutral point ω′i = 0 without a problem.

Similarly, we can start our continuation in the opposite direction along W = 0
with βi = 0 and αi = −∆αi. Near U ≈ 0.39 we encounter convergence problems
in our continuation procedure. A closer look at the corresponding iso-amplification
plot ωi(αr, βr) shows that now there are two possibilities where conditions (2.4) are
satisfied. The global maximum bifurcates into two maxima with a saddle point in
between, cf. the example shown in figure 2(e) for αi = −0.036, βi = 0. In figure 2(e)
the two maxima of the ωi(αr, βr) surface are marked by the two plus symbols. The
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saddle point of the ωi(αr, βr) surface at αr = 0.15095, βr = 0, indicated by the triangle
in figure 2(e), is also a critical point of the ωi(αr, βr) surface and is to be distinguished
from the saddle point in the steepest descent method. The saddle-point continuation
procedure is no longer unique. Without checking the pinching criterion for three-
dimensional wave packets, cf. Brevdo (1991), it is at first not clear which saddle point
is the physically relevant one.

Since we are continuing along the symmetry line W = 0, the condition ∂ωi/∂βr = 0
is satisfied for all β = 0. Therefore, the solution for two-dimensional wave packets,
cf. Brevdo (1995), can be used as guide. For this, the continuation method, as
described for example in Appendix B in Brevdo et al. (1999), encounters no problem
in reaching the neutral point ω′i = 0, because all saddle points strictly correspond to
maxima of the ωi(αr, βr = 0) curve with fixed (αi, βi = 0). Based on this observation
we conclude that for Blasius flow the continuation procedure for three-dimensional
wave packets has to switch from computing maxima to computing saddle points of
the ωi(αr, βr) surface in order to reach the neutral condition ω′i = 0 of figure 2(d )
with α = 0.15137 − 0.058454i, β = 0. A direct pinching analysis, which at present is
not available for three-dimensional wave packets, would probably lead to the same
result. In figure 2 we marked saddle points corresponding to maxima of the ωi(αr, βr)
surface by a square symbol, to distinguish them from saddle points corresponding to
saddle points of the ωi(αr, βr) surface, marked by triangles. Only the points marked
by triangles along W = 0 reach the neutral condition for W = 0. If one follows
the saddle points corresponding to maxima of the ωi(αr, βr) surface, one obtains the
dashed curve bifurcating near U ≈ 0.39,W = 0 in the main figure 2.

Keeping α constant, we may also compute quasi-two-dimensional wave packets
in the spanwise direction. The approximate results provide additional support for
the physical relevance of our three-dimensional analysis. For example we may fix
α = 0.15563 + 0i at the maximum of figure 2(f ), marked by the square symbol,
and apply the usual two-dimensional saddle-point continuation technique by varying
βi. Similar to the α variation in the streamwise direction with β = 0 fixed, cf.
Brevdo (1995), the global maximum can be continued without difficulty until neutral
conditions are reached. The result is shown as curve f in figure 3(a), where the square
symbol corresponds to the square in figure 2(f ).

Next, we fix α = 0.15096 − 0.036i, corresponding to the saddle marked by the
triangle in figure 2(e), and again perform a saddle-point continuation in the spanwise
direction. The ωi(βr) curve for βi = 0 in figure 3(b) now has two maxima, located
symmetrically about βr = 0. Furthermore, it has one minimum at βr = 0, marked
by the triangle. Starting our saddle-point continuation as usual at the maximum,
marked by the square symbol in figure 3(b), we reach the neutral point by increasing
βi step by step. For each βi = const. we compute the maximum of ωi(βr), proceeding
along the thick solid curve in figure 3(b). The resulting amplification ω′i is depicted by
curve e in figure 3(a) to the right of the square. The neutral points in figure 3(a) are
marked by circular symbols, and are also included in figure 2 for comparison. The
definitions (2.3) were used to compute U and W . In this example the two-dimensional
approximate results are surprisingly close to the three-dimensional neutral curve.

If we decrease βi, we see from figure 3(b) that this is only possible down to
βi = −0.00114, denoted by the star symbol. There, the corresponding ωi(βr) curve
has a vanishing second derivative and ∂βi/∂βr = 0. Therefore, no maximum exists
for βi < −0.00114. However, minima are also solutions of equations (2.4), and the
amplification curve can be continued by finding the minima of ωi(βr) along the dotted
curve in figure 3(b) by increasing βi until we reach the minimum of the βi = 0 curve
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Figure 3. Time-asymptotic two-dimensional spanwise wave packets in a Blasius boundary layer at
Re = 580: (a) growth rate ω′i as function of spanwise ray velocity W for fixed α = (0.15563, 0)
at the maximum in figure 2(f ), and fixed α = (0.15096,−0.036) at the saddle in figure 2(e).
(b) Saddle-point continuation for fixed α = (0.15096,−0.036) at the saddle in figure 2(e).

marked by the triangle in figure 3(b). The amplification ω′i , corresponding to this
continuation of minima, is shown in figure 3(a) by the dotted curve. Concluding,
we can say that switching from maxima to saddle points in the three-dimensional
saddle-point continuation, corresponds to switching from maxima to minima in
the two-dimensional saddle-point continuation, a slight extension of the procedure
described in appendix B of Brevdo et al. (1999). While this makes our solution more
plausible, it is no substitute for a collision check.

To elucidate the saddle-point switching further, we included in figure 2 the dash-
dotted curve with the arrow, starting at ωi,max and giving the results of a saddle-point
continuation along arctanβi/αi = 178◦. Only saddle points corresponding to maxima
of the ωi(αr, βr) surface are encountered. The dotted curve, originating at ω′i = 0,
W = 0, starts with arctan βi/αi = −6◦, and initially corresponds to saddle points of the
ωi(αr, βr) surface. In order to reach ω′i = 0, one has to again switch to computing saddle
points corresponding to maxima of the ωi(αr, βr) surface. This switching of the saddle
point along the ω′i = 0 neutral curve is also evident from the iso-amplification plots in
figures 2(a)–2(c). For the conditions of figure 2(c), with α = 0.11751− 0.053407i, β =
0.10889 + 0.009608i, the continuation procedure still follows only maxima of the
ωi(αr, βr) surface, starting with the global maximum at ωi,max(αi = 0, βi = 0). Near
the conditions of figure 2(b), with α = 0.13498 − 0.054223i, β = 0.07952 − 0.007921i,
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the switching to the saddle point of the ωi(αr, βr) surface is imminent. In figure 2(a),
with α = 0.14627−0.056837i, β = 0.044826−0.007728i, the saddle-point continuation
already follows the saddle points of the ωi(αr, βr) surface.

The conditions (2.4) are only necessary conditions for a maximum or minimum
to occur on the ωi(αr, βr) surface. Saddle points, or more degenerate critical points
of the ωi(αr, βr) surface also satisfy (2.4). From the theory of functions of several
variables it is well known that a sufficient condition for a maximum of ωi(αr, βr) is
that additionally ∂2ωi/∂α

2
r < 0, ∂2ωi/∂β

2
r < 0 and

E ≡
[
∂2ωi

∂αr∂βr

]2

− ∂2ωi

∂α2
r

∂2ωi

∂β2
r

< 0. (3.4)

E > 0 is a sufficient condition for a saddle point on the ωi(αr, βr) surface, while
the special case E = 0 necessitates the computation of higher derivatives. Such
critical points cause computational difficulties. Coincidentally, J. Delfs (personal
communication) had also looked at the same test case, but has not published the
results. When his Newton iteration did not converge, he extrapolated his results and
restarted the Newton iteration with the new starting values. From the geometrical
interpretation given above we can see that this meant switching from a maximum to
a saddle point of the ωi(αr, βr) surface in the saddle-point continuation procedure.
Near the coincidence of a maximum with a saddle point our purely geometrical
algorithm, making use of E > 0 in searching for a saddle point of the ωi(αr, βr)
surface, also fails and a better algorithm, including higher-order derivatives, would be
needed.

Figure 2, which should replace the corresponding figure in Gaster (1968) for
Reδ∗ = 1000, clearly shows that the origin of (U,W ) is outside the ω′i = 0 contour.
Therefore, at Re = 580 the Blasius boundary layer is locally convectively unstable,
as is well known, cf. Gaster (1975b) or Brevdo (1995). If we substitute x/t = U,
z/t = W , the ω′i = 0 contour also approximates the local spatial structure of the wave
packet at Re = 580 for large t. Our results for ω′i = 0 at Re = 580 are in complete
agreement with unpublished saddle-point continuation results of J. Delfs (personal
communication).

From figure 2 we also see that the terminology ‘chordwise (or spanwise) absolutely
unstable’, introduced by Lingwood (1997b) for swept-wedge flows, can be misinter-
preted and should be avoided. In a convectively unstable wave packet there will
always be the direction normal to the propagation direction of the centre of the
wave packet, in which the corresponding group velocity component is zero. Only if
both components of the group velocity vanish does it have physical relevance. For
example, in the Blasius boundary layer of figure 2 symmetry requires W = 0, cf. also
figure 3(a), but we do not call this flow ‘spanwise absolutely unstable’.

After publication of Koch (2000), I came across the very interesting paper by
Conrado & Bohr (1995), in which the origin of non-convex growth shapes
ω′i(U,W ) = 0 was studied by means of model equations with analytically given
dispersion relations. Looking for the general structure of growth shapes, they also
found that global maxima of the ωi(αr, βr) surface can degenerate and include saddle
points, with a possible change from one type of solution to the other in order to
obtain a well-behaved ω′i as function of (U,W ). This reconfirms the fact that without
checking the pinching criterion for three-dimensional wave packets, cf. Brevdo (1991),
the results of the saddle-point continuation procedure are not reliable unless physical
arguments help in selecting the relevant saddle point.
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x∗c/c∗ αc βc ψc (deg.) Re Np

0.2 −0.43437 0.24878 150.20 455.4462 8
0.4 −0.40416 0.30628 142.84 603.4576 8
0.6 −0.38534 0.34328 138.30 721.1089 10
0.8 −0.36712 0.37132 134.67 825.5734 12

(0.9525 −0.35342 0.38906 132.25 899.8744 16 PSE)
1.0 −0.35128 0.39422 131.70 922.3121 16

Table 2. Data of nonlinear steady primary crossflow vortex equilibrium and PSE solution.

3.2. Primary wave packet in the DLR swept-plate experiment

Having thus clarified the convergence problem in the numerical saddle-point contin-
uation procedure for Blasius flow, and having validated our code, we procede now
with the investigation of the spatio-temporal stability of primary crossflow vortices
in the DLR swept-plate experiment, cf. Bippes (1999). For this purpose we chose
the wave-oriented coordinate system (x∗ψ, y∗, z∗ψ). Since we are discussing only station-
ary primary crossflow vortices, the term vortex-oriented coordinate system is perhaps
more appropriate. Here, x∗ψ is the coordinate normal to the axis of the nonlinear steady
crossflow vortices with a spanwise wavelength of λ∗zc = 12 mm. This wavelength is
close to the experimentally verified maximum amplification of steady crossflow vor-
tices, cf. Koch et al. (2000). Coordinate z∗ψ is then along the vortex axis but in the
opposite direction to the growth of the vortex, see figure 1. In order to display the
results for primary and secondary crossflow vortices in the same coordinate system,
we used the wavenumbers of the nonlinear stationary crossflow vortices, which are
slightly different from those for linear stationary crossflow vortices, cf. Koch et al.
(2000). Some pertinent quantities of interest, namely the chordwise and spanwise
wavenumbers with ψc = arctan(βc/αc), the local Reynolds number and the number
of modes Np retained in the computation of the nonlinear equilibrium solution of the
steady crossflow vortices, are listed in table 2 for the five chordwise stations x∗c/c∗ to
be investigated.

Sample results of the computations for the time-asymptotic linear three-dimensional
wave packet at the chordwise station xc/c = 0.4 are depicted in figures 4 and 5. Again
we start our computation with purely temporal instabilities, i.e. αψ,i = βψ,i = 0. For this
we compute the maximal temporal amplification ωi,max, marked by the square symbol
at αψ = 0.40225, βψ = −0.05502 in the iso-amplification plot ωi(αψ,r, βψ,r) = const. of
figure 4(b). Computing (Uψ,Wψ) at ωi,max(αψ,i = 0, βψ,i = 0) via (2.3) and ω′i via (2.6),
we obtain the point marked by the square symbol in the ω′i(Uψ,Wψ) plot of figure 4.
We fix now for example βψ,i = 0 and increase αψ,i step by step in our saddle-point
continuation procedure until we reach ω′i = 0. This point is marked by the square
symbol on the ω′i = 0 curve in figure 4. The corresponding iso-amplification plot
ωi(αψ,r, βψ,r), with αψ,i = 0.12, βψ,i = 0, is depicted in figure 4(a) and shows that the
corresponding saddle point is at the maximum αψ = 0.21679+0.12i, βψ = −0.14831+0i
of the ωi(αψ,r, βψ,r) surface. On the other side, in order to reach the point marked
by a triangle on the ω′i = 0 curve by continuation, one has to switch again to
computing the saddle point of the ωi(αψ,r, βψ,r) surface at αψ = 0.44402+0.18546i, βψ =
−0.03503 − 0.05759i, as shown in figure 4(c). The shaded areas in figures 4(a) and
4(b) again indicate the amplified domain ωi > 0.

The wavenumbers corresponding to the ω′i(Uψ,Wψ) curves in figure 4 are depicted
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Figure 4. Time-asymptotic three-dimensional primary wave packet in the DLR swept-plate ex-
periment at xc/c = 0.4: temporal iso-amplification curves ω′i(Wψ,Uψ) = const. together with
three examples of temporal iso-amplification plots ωi(αψ,r, βψ,r) = const. with (αψ,i, βψ,i) fixed. �, ∗,
a saddle-point condition corresponding to a maximum of the ωi(αψ,r, βψ,r) surface; 4, marks a
saddle-point condition corresponding to a saddle point of the ωi(αψ,r, βψ,r) surface. ωi contour levels
are listed in table 1.

in figure 5. The same symbols are used to indicate where corresponding points are
located. It is interesting to note that the curve ω′i(αψ,i, βψ,i) = 0 in figure 5 crosses itself.
This means that the same spatial amplification (αψ,i, βψ,i) corresponds to two different
points on the neutral ω′i = 0 curve in figure 4. These are the critical points where the
saddle-point continuation procedure switches from maximum to saddle point, or vice
versa. Furthermore, we note that due to lack of symmetry the αψ,i = 0 solution of
figure 5 no longer corresponds to the two-dimensional wave packet solution Uψ = 0
in figure 4 as for the Blasius boundary layer.

Figure 6 gives a summary of the time-asymptotic results for three-dimensional wave
packets at the five chordwise stations xc/c = 0.2, 0.4, 0.6, 0.8, 1.0. This corresponds to
the local Reynolds numbers listed in table 2. We see that at all five chordwise
stations the neutral ω′i = 0 curves, bounding the unstable ray velocities, do not
include the origin of (Uψ,Wψ). Therefore, according to the saddle-point continuation
procedure the primary crossflow instabilities in the DLR swept-plate experiment are
convectively unstable for these conditions. The vanishing of Uψ , the group velocity
component normal to the vortex axis, is of no importance as long as Wψ does not
vanish simultaneously. The mere fact that the PSE approach worked for the DLR
swept-plate flow, cf. Bertolotti (1996) or Koch et al. (2000), is already an indication
that the primary crossflow vortices in this flow must be convectively unstable.

The spatial shapes of the wave packets in figure 6 look qualitatively similar to
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Figure 5. Time-asymptotic three-dimensional primary wave packet in the DLR swept-plate ex-
periment at xc/c = 0.4: (a) iso-amplification curves ω′i(αψ,i, βψ,i) and (b) iso-amplification curves
ω′i(αψ,r, βψ,r) corresponding to the iso-amplification curves ω′i(Uψ,Wψ) of figure 4. �, ∗, a saddle-point
condition corresponding to a maximum of the ωi(αψ,r, βψ,r) surface; 4, a saddle-point condition
corresponding to a saddle point of the ωi(αψ,r, βψ,r) surface.

the one computed by Oertel & Delfs (1996) for compressible crossflow vortices on a
swept wing. These authors also obtained their results via saddle-point continuation.
Therefore, their results are subject to the same limitations with respect to choosing
the physically correct saddle point. However, on extending the straight wing and 30◦
swept-wing experimental investigation of Chernoray et al. (2001) to a 45◦ swept-wing
boundary-layer, Pratt et al. (2001) recently showed results for spots, which in the
linear domain are qualitatively similar to that in figure 6. While this lends some
credibility to our saddle-point solutions, it should be emphasized once again that for
a proof we still need a practically implementable collision check for three-dimensional
wave packets.

4. Spatio-temporal analysis of secondary crossflow vortices
As mentioned in the Introduction, Huerre (1988) recognized very early that the

spatio-temporal stability of a secondary instability need not be the same as that for
a primary instability. For a secondary instability the amplitude of the nonlinearly
deformed primary crossflow vortex becomes an additional parameter. High-frequency
secondary instabilities are unstable only above a certain threshold amplitude of the
primary crossflow vortex, and have been observed in experiments shortly before tran-
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Figure 6. Time-asymptotic three-dimensional primary wave packets in the DLR swept-plate exper-
iment initialized at various chordwise stations xc/c. Temporal iso-amplification contours are shown
for ω′i = 0, 0.0025, 0.005, 0.0075.

sition. For swept-wing and swept-plate flows these have been investigated recently by
Malik, Li & Chang (1996), Malik et al. (1999), Koch et al. (2000), Janke & Balakumar
(2000), and in the experiments of Lerche (1997), Kawakami et al. (1999), White (2000)
and White et al. (2001). Very little is known about the spatio-temporal stability of
high-frequency secondary instabilities. The preliminary saddle-point results of Koch
(2000) for primary steady equilibrium solutions of the DLR swept-plate experiment
showed only convectively unstable secondary instabilities up to a chordwise distance
xc/c = 0.6. This still left some hope that near the downstream edge of the plate at
xc/c = 1.0, where transition is observed experimentally, cf. Deyhle & Bippes (1996),
an absolute instability might be found. The main purpose of the present investigation
is to fill the gap between xc/c = 0.6 and xc/c = 1.0.

The mathematical theory of absolute–convective instabilities in a spatially periodic
base flow was worked out recently by Brevdo & Bridges (1996). Although the proof
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is highly intricate, the result for two-dimensional wave packets is extremely simple:
by using the Floquet exponent instead of the wavenumber a ‘pinching’ criterion can
be derived completely analogous to the spatially homogeneous case. Thus, neglecting
the slow growth of the nonlinear primary steady crossflow vortex along the negative
vortex axis zψ , i.e. using the parallel flow assumption, and applying Floquet theory,
secondary disturbances can be written in the form

v(xψ, y, zψ, t) = exp{i(aψxψ + bψzψ − ωt)}
+Ns∑
ν=−Ns

v̄ν(y) exp{iναψxψ}. (4.1)

Here αψ = (α2
c+β

2
c )

1/2 is the real wavenumber of the primary steady crossflow solution,
cf. table 2, and Ns gives the numerical truncation of the secondary modes. In general
Ns = Np with Np listed in table 2. Also, aψ is the complex Floquet exponent, bψ the
complex wavenumber in the homogeneous direction zψ , and ω denotes the complex
frequency.

As nonlinear base flow we chose the primary steady crossflow equilibrium solution
of Koch et al. (2000), because the amplitude of this solution depends only on the
chordwise distance xc/c. However, we note that the equilibrium solution makes
use of the parallel-flow assumption and therefore is non-rational. Contrary to this,
corresponding parabolized stability equation (PSE) solutions take into account the
growth of the crossflow vortices, but depend on the initial conditions, which are
governed by receptivity, cf. Malik et al. (1996), Stolte (1999) or Koch et al. (2000).
This is demonstrated in figure 7, which was adapted from figure 7 in Koch et al. (2000),
and depicts the total disturbance energy E of the steady primary crossflow vortex in
the DLR experiment. E is defined per unit mass and non-dimensionalized with the
local free-stream velocity and the similarity length in the chordwise direction. It is
proportional to the square of the disturbance amplitude. The equilibrium solution
essentially envelopes the various PSE solutions, and therefore has been chosen as
model for a nonlinear base flow with variable amplitude. The circular symbols mark
the chordwise locations of the primary instabilities, investigated in § 3. The triangular
symbols show E of the equilibrium solution at the five chordwise stations to be
investigated in this section. The star gives E of the primary base flow at the chordwise
station of the single PSE case at xc/c = 0.95 to be presented.

In order to find the time-asymptotic solution of a three-dimensional wave packet we
have to use the numerically computed dispersion relation for secondary instabilities,
and search for saddle points in the (complex) aψ- and bψ-planes corresponding to a
simultaneous ‘pinching’ of the Fourier inversion contours. As we have seen in § 3, this
is already a considerable task for primary instabilities. For secondary instabilities, with
more than ten unstable modes, and requiring considerably higher computer times for
their computation, this is not yet feasible. We therefore try to get a preliminary idea
of the spatio-temporal behaviour of secondary instabilities by investigating quasi-
two-dimensional wave packets with aψ = 0. These two-dimensional wave packets
propagate essentially along the axis of the primary vortex. As suggested by a referee
one could include variable detuning aψ,r 6= 0 as in figure 17 of Koch et al. (2000),
and find the wave angle for maximum amplification, cf. also the DNS results of
Wassermann & Kloker (2002), but no change in the absolute–convective character
would be expected.

A direct computation of the pinching points of such two-dimensional wave packets
requires a global eigenvalue solver for spatial secondary instabilities. Due to the
large number of secondary modes Ns necessary for convergence, this is orders of
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Figure 7. Total disturbance energy E of the steady primary crossflow vortex in the DLR swept-plate
experiment for λ∗zc = 12 mm, Q∗∞ = 19 m s−1 and ϕ∞ = 42.5◦, cf. Koch et al. (2000). The equilibrium
solution envelopes various PSE solutions with initial amplitudes decreasing from left to right.
Symbols mark E-values at the chordwise stations of the investigated primary ( e) and secondary
(4, ∗) instabilities.

magnitude more time consuming than for primary instabilities. Therefore, we use the
simpler saddle-point continuation method for the time-asymptotic computation of
these quasi-two-dimensional wave packets. Analogous to the procedure for primary
instabilities, the starting point is the computation of the maxima dωi/dbψ,r = 0
of the temporal amplification rate ωi(bψ,r) of all secondary instability modes for
bψ,i = 0. To compute the temporal secondary stability we used the v–η formulation
described in Koch et al. (2000).† For the numerical solution, the truncated Floquet
equations, together with the homogeneous boundary conditions, are transformed into
an algebraic eigenvalue problem by means of Chebyshev collocation in the wall-
normal direction. To obtain sufficient resolution near the boundary-layer edge, where
the maxima of the secondary eigenfunctions are expected, a double mapping from
Erlebacher & Hussaini (1990) was applied to map the physical domain onto the
computational domain. The eigenvalue problem was solved for a few bψ,r by means of
a global solver. Individual eigenvalues for different values of bψ,r were then computed
using Wielandt’s iteration, cf. Zurmühl (1961, p. 289ff), extended to complex aψ, bψ .

Up to xc/c = 0.8 the secondary ωi(bψ,r) amplification curves are presented in Koch
et al. (2000). Figure 8 extends these results for the first few most-amplified modes
up to xc/c = 1.0. With increasing amplitude of the primary equilibrium crossflow
vortex, corresponding to increasing xc/c, more and more secondary instability modes
become amplified with multiple maxima and even modal coalescence, cf. the case
xc/c = 0.8 in figure 8. At least three types of secondary instability modes can be
distinguished, denoted by type I, II and III, cf. Malik et al. (1996). For all xc/c the
most amplified mode belongs to the type I instability, which is due to inflectional
spanwise shear layers, and is marked by solid curves in figure 8. The type II and III
instabilities are due to shear layers in the wall-normal direction. Type II modes are
depicted by dashed curves. They have their maximum amplitude near the boundary-

† Corrigendum: I am grateful to M. Kloker and R. Messing for pointing out a printing error in
Koch et al. (2000). In the coefficient EOS

µ,ν for ν 6= 0 on p. 170 the term −αµ,0k2
µ,ν should be replaced

by −α0,νk
2
µ,0. All numerical results were obtained with the correct formula.
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Figure 8. Temporal growth rate ωi(bψ,r) of secondary instability modes with aψ = 0 for the primary
steady crossflow equilibrium vortex in the DLR swept-plate experiment at various xc/c; bψ,r is the
wavenumber along the axis of the primary crossflow vortex. Solid, dashed and dotted curves denote,
respectively, types I, II and III modes (see text). The symbols × for xc/c = 0.4 show sample results
after doubling the resolution from Np = Ns = 8 to Np = Ns = 16.

layer edge. Type III modes, marked by dotted curves, have their maximum amplitude
near the wall. However, modes with lower amplification rates cannot be classified
unambiguously.

Using a saddle-point continuation procedure analogous to that employed in § 3 for
primary two-dimensional wave packets, we increase or decrease bψ,i step by step and
search for maxima of ωi(bψ,r), keeping bψ,i fixed. Then the corresponding ray velocity
Wψ and amplification ω′i can be evaluated at the various maxima. This procedure
is continued until ω′i = 0 is reached, as depicted in figure 9 for xc/c = 0.4. The
main difference to primary wave packets is that we have several secondary instability
modes, and without proof of pinching it is a priori not clear which one would be
the physically relevant one, cf. the discussion by Conrado & Bohr (1995) or Brevdo
et al. (1999) for two unstable primary modes. In the following we therefore consider
several of the most amplified modes, and check if their group velocity Wψ approaches
zero. In figure 9 the points for bψ,i = 0 correspond to the maxima marked in figure 8
for xc/c = 0.4. They are the starting points of the saddle-point continuation and are
denoted by the same symbols. We notice that most of the type I and II modes have
group velocities Wψ close to the boundary-layer edge velocity, and therefore are poor
candidates for an absolute instability. It was hoped that the type III mode or modes,
with maxima at very low wavenumbers bψ,r might be better. However, this was not
the case for higher xc/c.

As pointed out by one reviewer, numerical accuracy is questionable if the two-
dimensional eigenvalue problem is under-resolved. For the spatio-temporal stability,
derivatives of the temporal amplification curves need to be computed, which are
even more sensitive to insufficient numerical resolution. This could mean that some
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Figure 9. Time-asymptotic two-dimensional secondary instability wave packets with aψ = 0 on
the steady primary crossflow equilibrium vortex in the DLR swept-plate experiment at xc/c = 0.4:
growth rate ω′i(Wψ) at various saddle points. The symbols × show the results after doubling the
resolution from Np = Ns = 8 to Np = Ns = 16.

of the wiggles in figure 8 are caused by under-resolution and are not physical.
In our investigation we had to compromise between accuracy and computer time
requirements. Basically we employed the resolution Np of the equilibrium base flow
used in Koch et al. (2000), as summarized in table 2, and kept the same number Ns

of Floquet modes. While our tests showed that the wall-normal resolution of K = 55
Chebyshev polynomials seems adequate in conjunction with the double mapping, the
number of Fourier and Floquet modes, i.e. Np and Ns, is rather low. This is apparent
in figure 23 of Malik et al. (1996). Increasing the resolution from 8× 41 to 16× 51 in
that paper resulted in noticeable ωi changes. Therefore, in their recent paper Malik
et al. (1999) kept 32 Fourier modes, and used the Krylov subspace method to solve
the eigenvalue problem.

Following the suggestion of the reviewer, we therefore doubled the resolution for
the xc/c = 0.4 case in figure 8 from Np = Ns = 8 to Np = Ns = 16. Sample points of
the Np = Ns = 16 computation are included as cross symbols in figure 8. There are
visible differences in the temporal growth rate, especially at higher wavenumbers and
conditions near a modal coincidence, cf. the high-wavenumber hump in mode I. But
in general the accuracy of the temporal growth rate appears to be sufficient for our
purpose. Even the low-frequency maximum is predicted accurately. More critical is
the accuracy of the saddle points. In figure 9 the results for three modes, computed by
doubling the resolution to Np = Ns = 16, are depicted by cross symbols. Comparison
with the Np = Ns = 8 curves demonstrates that the domain of unstable ray velocities
is accurately predicted with the lower resolution in this example.

Aside from the resolution problem, we should stress the fact that the equilibrium
base flow solution is only an approximation due to the quasi-parallel-flow assumption
employed. Even higher resolution cannot make it more exact. In this paper we merely
use the equilibrium base flow to qualitatively model the effect of increasing base-
flow amplitude, in order to explore the possibility of a transition from convective
to absolute instability. To estimate how reliable the equilibrium base flow results
are, we include a single example using the more realistic PSE base flow. We chose
xc/c = 0.95 of the PSE base flow with the lowest initial amplitude depicted in Koch
et al. (2000), cf. the point marked by the star symbol in figure 7. In his thesis
Stolte (1999) had computed such a PSE base flow with Np = 16, and investigated
its secondary instability at various chordwise stations. Unfortunately, as discovered
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Figure 10. PSE base flow at xc/c = 0.95: (a) temporal growth rate ωi(bψ,r) of the ten most amplified
secondary instability modes for aψ = 0; (b) Time-asymptotic two-dimensional secondary instability
wave packets propagating along the crossflow vortex axis: growth rate ω′i(Wψ) of the three modes
marked by symbols in (a).

by Stefan Hein, a small programming error in transforming the PSE base flow from
primitive variables to the v–η formulation, makes the secondary stability results
in Stolte (1999) quantitatively wrong. With all probability, this also explains the
occurrence of modes which did not fit the usual classification of Malik et al. (1996).
As a consequence, all secondary stability curves had to be recomputed. Figure 10(a)
shows the recomputed secondary growth rates of the ten most amplified modes for
the PSE base flow at xc = 0.95 with aψ = 0. Qualitative and quantitative differences
to the results for the equilibrium base flow are apparent. For example, the secondary
amplification rate with the PSE base flow is more than twice as high as that with
the equilibrium base flow, even though the total disturbance energy in figure 7 is
practically identical. But, in both cases a type I instability is by far the most amplified.
Figure 10(b) shows wave packet results for three selected modes with aψ = 0, marked
by the same symbols in figure 10(a). The amplified domain of the corresponding ray
velocities does not include the zero group velocity.

Figure 11 summarizes our results of the saddle-point continuation for the equi-
librium base flow with aψ = 0. For all xc/c the group velocity Wψ of the wave
packet corresponding to the most amplified mode is around −0.8. In our secondary
instability problem we can have more than ten unstable modes. And each mode can



106 W. Koch

xi«

xi«

xi«

xi«

Wã

xc /c = 0.2

–0.4 –0.6 –0.8 –1.0

0.008

0

–0.4 –0.6 –0.8 –1.0

0.008

0

0.016

–0.4 –0.6 –0.8 –1.0

0.01

0

0.02

xc /c = 0.4

xc /c = 0.6

Wã

–0.4 –0.6 –0.8 –1.0

0.01

0

0.02

0.03

0.04

–0.4 –0.6 –0.8 –1.0

0.01

0

0.02

0.03 xc /c = 0.8

xc /c = 1.0

xi«

Figure 11. Time-asymptotic two-dimensional secondary instability wave packets with aψ = 0 on
the steady primary crossflow equilibrium vortex in the DLR swept-plate experiment: growth rate
ω′i(Wψ) of a few selected saddle points at different chordwise stations.

have several maxima and minima. Therefore, without proof of pinching it is not at
all clear which saddle point is the physically relevant one, cf. the primary instability
analysis of Brevdo et al. (1999). Similar to our primary wave packet analysis, the
saddle-point continuation of maxima fails at certain points. Then one has to switch
from computing maxima to computing minima of the amplification curve ωi(bψ,r). The
cross symbols in figure 11 for xc/c = 1 are an example of such continuation points
for minima. While saddle-point continuation results in continuous ω′i values at such
switching points, ω′i is discontinuous at modal coincidence points. At present it is not
clear if such points have any physical relevance. All we can say with our analysis is
that for all saddle points investigated, the amplified ray-velocity domain ω′i(Wψ) > 0
did not contain the zero group velocity, i.e. according to saddle-point continuation
the secondary high-frequency instabilities in the DLR swept-plate experiment are
convectively unstable. However, it must again be emphasized that in the absence of
a collision check this is no proof for the non-existence of an absolute instability.

Recent results of a spatial direct numerical simulation (DNS) by Wassermann &
Kloker (2001, 2002), for a very similar swept-plate problem strongly support this
conclusion. These authors showed that steady disturbances alone result in a steady
nonlinear state without transition, similar to the equilibrium solution in Koch et al.
(2000). When they added a time-periodic background pulse near saturation of the
steady disturbances, transition was reached through a strong amplification of high-
frequency secondary disturbances. After some simulation time Wassermann & Kloker
switched off the periodic background pulse. This caused the unsteady disturbances
to be swept downstream and the flow field relaxed again to a steady state, providing
clear evidence for the convective nature of high-frequency secondary instabilities. The
transient forcing experiment of White (2000), who comes to the same conclusion, is
not exactly comparable because with his variable-amplitude leading-edge roughness,
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not only the secondary but also the primary disturbance is switched off. But the
nonlinear amplitudes of the primary crossflow vortices are a prerequisite for the
occurrence of high-frequency secondary instabilities, which might become absolutely
unstable. Wassermann & Kloker (2002) correctly retain the almost saturated primary
crossflow vortices and only switch off the time-periodic background pulses in their
numerical simulation.

5. Conclusion
To examine the possible occurrence of an absolute instability in the three-

dimensional boundary layer of the DLR swept-plate experiment we investigated
the spatio-temporal stability of primary and secondary instabilities using the parallel
flow assumption. The DLR swept-plate experiment constitutes a model for more gen-
eral three-dimensional boundary layers. For the primary instabilities time-asymptotic
three-dimensional wave packets were computed at several chordwise stations cor-
responding to increasing Reynolds number. We used the saddle-point continuation
procedure, starting with the most unstable saddle point, because for three-dimensional
wave packets no direct method for the verification of pinching exists at present. As
demonstrated in Brevdo et al. (1999), finding no absolute instability in the framework
of saddle-point continuation does not prove that the flow is absolutely stable. How-
ever, unless contrary experimental or DNS evidence exists, these saddle-point results
give a first indication about the absolute–convective stability of the flow. A geometric
interpretation of the saddle-point continuation elucidated certain convergence prob-
lems in the numerical wave packet analysis. However, this is no help in the absence of
a verification of the pinching criterion, because there may be other points contributing
to the instability which are not connected at all – by any continuation algorithm – to
the most unstable saddle point. In agreement with previous findings for similar flows,
the saddle-point continuation results for the DLR swept-plate experiment show only
convective instability for primary crossflow vortices.

Using the highly nonlinear equilibrium solution for steady primary crossflow vor-
tices as an amplitude-dependent model for a spatially periodic base flow, the second
part of this paper applies the recently published theory of Brevdo & Bridges (1996) to
study the spatio-temporal stability of high-frequency secondary instabilities. For com-
parison we also included one example using a PSE base flow. At the higher amplitudes
near saturation of the primary crossflow vortices more than ten secondary instability
modes are amplified, each with several saddle points. We limited our analysis to quasi-
two-dimensional wave packets propagating essentially along the axis of the stationary
crossflow vortex. Due to prohibitive CPU time requirements the existing pinching pro-
cedure for two-dimensional secondary instabilities cannot be implemented in practice.
We applied the saddle-point continuation method again, starting at the maxima of
various amplified secondary instability modes. In the absence of a proof of pinching
we limit the search to amplified domains of ray velocities which include the zero group
velocity. But none of the secondary instability modes investigated came even close
to zero group velocity. Again, this does not constitute a proof for the non-existence
of an absolute instability, especially since we did not investigate all possible saddle
points. But it is an indication that the high-frequency secondary instabilities in the
DLR swept-plate experiment are also convectively unstable. This is contrary to our
original expectations, because Delbende et al. (1998), Olendraru et al. (1999) and
Yin et al. (2000) found parameter regions of absolute instability for the Batchelor
vortex, i.e. a longitudinal vortex without bounding walls. Our saddle-point results
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were corroborated recently by spatial direct numerical simulations of Wassermann &
Kloker (2001, 2002) for a similar three-dimensional boundary layer.

As a consequence of these findings, breakdown to turbulence in a three-dimensional
boundary layer is initiated, but not instantly caused, by high-frequency secondary
instabilities, cf. Malik et al. (1999). Apparently these high-frequency secondary in-
stabilities grow rapidly and reach a nonlinear state before breakdown, as observed
experimentally by White (2000), Kohama et al. (2000), and White et al. (2001). The
convective character of secondary instabilities implies that the nonlinear state of sec-
ondary instabilities can be computed by means of spatial marching techniques such
as the PSE method. Aside from costly spatial DNS, such PSE solutions provide a less
time-consuming description of the nonlinear state before breakdown, and possibly
give a clue of the breakdown mechanism.
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